

## **Vaccines for Breast Cancer**

BCEA Annual Education Conference Oct. 05,2019

> Keith L. Knutson Professor of Immunology Department of Immunology

> > ©2017 MFMER | slide-1

## **Conflict of Interest**

- Marker Therapeutics, Inc.
  - Cancer Vaccines and T Cell Therapy Houston Tx
  - Scientific Advisory Board (unpaid)
  - Several Patent Licensing Agreements (Mayo)
- Kiromic, Inc.
  - Cancer Vaccines Lubbock, TX
  - Scientific Advisory Board (Stock)
- Antigen Express, Inc.
  - Cancer Vaccines Cambridge, MA
  - Scientific Advisory Board (Paid)
- Macrogenics, Inc.
  - Biologics Bethesda, MD
  - Grant funding



## **Breast Cancer**

# Worldwide: 1950K cases/year, 650K deaths/year

USA BREAST: 240K cases/year, 40K deaths/year USA OVARIAN: 22K cases/year, 14K deaths/year



#### Estimated USA Breast Cancer Costs: \$180,000,000,000 1% of the GDP



# The adaptive immune system in the body's drug making machinery

#### CD4 "helper" T cells

- Inflammation (macrophages and neutrophils)
- Antibodies
- •Induce/Enhance cytotoxic T cells
- •Immune-surveillance
- •Epitope-spreading

#### CD8 "cytolytic" T cells

•Tumor lysis

#### **B** cells

Antibodies

Signaling

•ADCC

Complement

12 million unique T and B cells per teaspoon of blood



# Differentiation of the adaptive immune response





## Immune-based approaches for cancer

- Cancer vaccines
- Monoclonal and other antibodies
- Adoptive T cell therapies
- Immune checkpoint blockade and reversal of immune suppression



## Vaccination is used to heighten the sensitivity of the immune system to tumor antigens





#### The Immune System Naturally Responds to Breast Cancer – The T Cell Response is Associated with Improved Survival



HER-2 Breast Cancer – 10 Year Survival Analysis

Patients with Breast Cancer Demonstrate Elevated T cell and Antibody Immunity to Several Tumor Antigens

Disis et al., 2000, Breast Cancer Research and Treatment

Kalli et al., 2008, Cancer Research

Karyampudi et al., 2013, Plos One

Krempski, et al. 2011, Journal of Immunology

Karyampudi, et al., 2014, Cancer Research

Knutson, et al., 2006, Journal of Clinical Oncology



## Immune suppression in the cancer microenvironment blocks anti-tumor immunity





# Target neoantigen choices for a cancer vaccine

- Microbial neoantigens
- Amino acid mutation neoantigens.
- Frameshift / fusion neoantigens
- Splicing variant neoantigens
- Indel neoantigens
- Nonmutated 'self' antigens (subdominant neoantigens)



Mutation derived

# Overexpressed self proteins as a source of tumor neoantigens





## Normal healthy HER2+ cardiomyocytes are not recognized by HER2 neoepitope specific T cells







#### Early generation HER2 vaccines

- ECD Vaccine
- ICD Vaccine (Phase I/II)
- HLA-A2 Vaccine (Phase II)
- E75 Vaccine

Knutson KL, et al., JCI 2001 Disis ML, et al., JCO, 2002 Knutson KL, et al., Clin Cancer Res, 2002



# HER2 vaccines to protect against disease recurrence in breast cancer





#### Development of immunity to vaccine is associated with reduced relapse increased response – reduced relapse



Courtesy of Eric von Hofe



#### Vaccine Prolongs Remission in Triple-Negative Breast Cancer

SAN FRANCISCO -- Treatment with a novel peptide vaccine appeared to delay disease recurrence in triplenegative breast cancer (TNBC) patients with low HER2 expression, a subgroup analysis of a phase II trial found.

At a median follow-up of 26.1 months, disease recurrence occurred in 7.5% of TNBC patients who received nelipepimut-S (NeuVax) compared with 26.7% in the control arm (HR 0.26, 95% CI 0.08-0.81, *P*=0.01), reported Guy T. Clifton, MD, of San Antonio Military Medical Center in Texas.

"We think the results are intriguing in light of what we now understand as far as triple-negative breast cancer being a more immunogenic subtype of breast cancer that's more responsive to immunotherapy," he said during his presentation here at the <u>ASCO-SITC Clinical Immuno-Oncology Symposium</u>.

In the NeuVax and control arms, respectively, rates of disease-free survival (DFS) among the 97 TNBC patients were:

- 92.6% versus 70.2% at 24 months
- 82.3% versus 70.2% at 36 months



## Human MHC Locus



DRB1\*0101, DRB1\*0301 DRB1\*0401, DRB1\*0404 DRB1\*0405, DRB1\*0701 DRB1\*0802, DRB1\*0901 DRB1\*1101, DRB1\*1201 DRB1\*1302, DRB1\*1501 DRB3\*0101, DRB4\*0101 DRB5\*0101



Janeway, 9th Ed



## **Binding of predicted HER2 neoantigens to purified HLA-DR**

|                 |               |                       | IC <sub>50</sub> nM to purified HLA |               |               |               |               |               |               |               |               |               |               |               |               |               |               |
|-----------------|---------------|-----------------------|-------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Sequence        | Peptide Name  | Position <sup>¶</sup> | DRB1<br>*0101                       | DRB1<br>*0301 | DRB1<br>*0401 | DRB1<br>*0404 | DRB1<br>*0405 | DRB1<br>*0701 | DRB1<br>*0802 | DRB1<br>*0901 | DRB1<br>*1101 | DRB1<br>*1201 | DRB1<br>*1302 | DRB1<br>*1501 | DRB3<br>*0101 | DRB4<br>*0101 | DRB5<br>*0101 |
| NLELTYLPTNASLSF | HER-2/neu.59  | 59                    | 4.9                                 | 7356          | 6.2           | 2.7           | 38            | 7.2           | 94            | 3055          | 30            | 141           | 105           | 23            | ND            | 29            | 189           |
| LTYLPTNASLSFLQD | HER-2/neu.62  | 62                    | 9.7                                 | 3364          | 19            | 16            | 80            | 15            | 426           | 4081          | 213           | 150           | 47            | 132           | 141           | 1633          | 173           |
| IQEVQGYVLIAHNQV | HER-2/neu.77  | 77                    | 57                                  | 7763          | 111           | 178           | 102           | 35            | 213           | 302           | 165           | 3438          | 103           | 75            | 13,508        | 546           | 1361          |
| YVLIAHNQVRQVPLQ | HER-2/neu.83  | 83                    | 28                                  | 454           | 53            | 104           | 1185          | 92            | 300           | 358           | 208           | 302           | 1.9           | 679           | 649           | 124           | 18            |
| HNQVRQVPLQRLRIV | HER-2/neu.88  | 88                    | 950                                 | 971           | 840           | 78            | 1303          | 80            | 85            | 6644          | 21            | 42            | 270           | 340           | ND            | 18            | 173           |
| MEHLREVRAVTSANI | HER-2/neu.347 | 347                   | 9.6                                 | 2970          | 533           | 12            | 200           | 9.7           | 95            | 4345          | 262           | 221           | 23            | 86            | ND            | 81            | 216           |
| LREVRAVTSANIQEF | HER-2/neu.350 | 350                   | 17                                  | 3913          | 43            | 8.2           | 50            | 12            | 456           | 5187          | 661           | 161           | 1.5           | 27            | ND            | 163           | 94            |
| LSVFQNLQVIRGRIL | HER-2/neu.422 | 422                   | 1.3                                 | 345           | 6.3           | 33            | 26            | 7.1           | 148           | 859           | 9.6           | 486           | 80            | 33            | ND            | 67            | 17            |
| RGRILHNGAYSLTLQ | HER-2/neu.432 | 432                   | 2.4                                 | 710           | 480           | 129           | 2845          | 5.6           | 5077          | 430           | 773           | 40            | 1.3           | 5.4           | 358           | 562           | 82            |
| LRSLRELGSGLALIH | HER-2/neu.455 | 455                   | 7.1                                 | ND            | 896           | 14            | 603           | 142           | 1075          | 594           | 309           | 498           | 16            | 24            | 16,142        | 549           | 726           |
| VLGVVFGILIKRRQQ | HER-2/neu.666 | 666                   | 67                                  | 2449          | 177           | 335           | 101           | 17            | 35            | ND            | 12            | 268           | 17            | 185           | ND            | 958           | 38            |
| SRLLGICLTSTVQLV | HER-2/neu.783 | 783                   | 80                                  | 2923          | 85            | 13            | 90            | 9.0           | 634           | 137           | 80            | 446           | 4.7           | 39            | 3567          | 481           | 392           |
| PIKWMALESILRRRF | HER-2/neu.885 | 885                   | 12                                  | 30            | 14            | 250           | 161           | 664           | 312           | 3620          | 133           | 66            | 349           | 3.3           | ND            | 62            | 3.4           |
| IKWMALESILRRRFT | HER-2/neu.886 | 886                   | 16                                  | 10            | 37            | 1075          | 435           | 1795          | 515           | 9282          | 136           | 241           | 1118          | 11            | ND            | 340           | 3.3           |
| FSRMARDPQRFVVIQ | HER-2/neu.976 | 976                   | 29                                  | 35            | 512           | 2224          | 855           | 1423          | 798           | 1481          | 49            | 6867          | 240           | 1408          | 901           | 227           | 45            |

<sup>1</sup>Position of N-terminal amino acid; ND=not determined; Peptides that constitute degenerate pool are in bold

Karyampudi, Cancer Res, 2010



### **Detection of pre-existent immunity**



DRB1\*0101, DRB1\*0301 DRB1\*0401, DRB1\*0404 DRB1\*0405, DRB1\*0701 DRB1\*0802, DRB1\*0901 DRB1\*1101, DRB1\*1201 DRB1\*1302, DRB1\*1501 DRB3\*0101, DRB4\*0101 DRB5\*0101

MAYO CLINIC



Karyampudi et. al., Clin Cancer Res. 2010 Knutson KL and Ishioka G, 2007, HLA DR binding peptides and their uses. Patented 12/740,562.



# Vaccine induces immunity to naturally processed antigens



Months



### Majority of patients can be vaccinated



Antigen



## Generation of durable HER2-specific T cells in majority of patients with resected HER2 breast cancer



DRB1\*0101, DRB1\*0301 DRB1\*0401, DRB1\*0404 DRB1\*0405, DRB1\*0701 DRB1\*0802, DRB1\*0901 DRB1\*1101, DRB1\*1201 DRB1\*1302, DRB1\*1501 DRB3\*0101, DRB4\*0101 DRB5\*0101

Knutson et. al., 2019 under review





Norton, *Breast Cancer Res Treat*, 2018 Knutson, *Cancer Res* 2016 Taylor, *Clin Cancer Res*, 2007



## BC170530: Phase II resected advanced HER2+ breast cancer



collected on cycle 1 of maintenance with trastuzumab and pertuzumab (HP), 30 days and 24 months after

completion of HP. For patients without pCR, who will be randomized, research blood draw will be collected on cycle

1, 4, 7 of maintenance HP as well as 30 days, 3, 12, and 24 months after completion of HP.

Placebo vaccination every 4 weeks for 6 cycles.

HER2 vaccination every 4 weeks for 6 cycles.

# Spontaneous immunity to the folate receptor alpha in cancer patients



Knutson, K. L. et al. **JCO;** 24:4254-4261 2006





# Folate receptor alpha peptide vaccine generates immunity in breast and ovarian cancer patients



Kalli, Block Clin Cancer Res, 2018



#### BC141410: FRa Vaccination to Prevent Progression of Triple Negative Breast Cancer





# IL-17 association with improved survival in ovarian cancer



Kryczek et al., JI 2011



## Th17-inducing vaccines generate Th1 and Th17 immunity



Block, 2017, Unpublished Observations, SPORE P8



## The generation of antibody immunity is associated with improved survival



Block, 2017, Unpublished Observations, SPORE P8



## Neoantigen discovery bioinformatics pipelines · Maximized discovery of





# Breast cancer appears to be enriched in the type of neoantigens that are highly immunogenic



Algo 3. 0.2-0.1-0.0-0 Log2 Class I Neoantigen Load Algo 2. 0.4-0.2-0.1-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-0.2-

# of NeoAg per Patient



## Neoantigens are largely private making every product different

#### NeoAg Recurrence in the TCGA BRCA patients



# of NeoAg

| Peptide         | # Patients | Gene   | Mutation type | Mutation                             |
|-----------------|------------|--------|---------------|--------------------------------------|
| EALEYFMKQMNDARH | 71         | PIK3CA | SNV           | p.M1004I, p.H1047R                   |
| ALEYFMKQMNDARHG | 70         | PIK3CA | SNV           | p.M1004I, p.H1047R                   |
| LEYFMKQMNDARHGG | 70         | PIK3CA | SNV           | p.M1004I, p.H1047R                   |
| QEALEYFMKQMNDAR | 68         | PIK3CA | SNV           | p.M1004I, p.H1047R                   |
| EYFMKQMNDARHGGW | 66         | PIK3CA | SNV           | p.M1004I, p.H1047R                   |
| YFMKQMNDARHGGWT | 57         | PIK3CA | SNV           | p.M1004I, p.H1047R                   |
| FMKQMNDARHGGWTT | 47         | РІКЗСА | SNV           | p.M1004I, p.H1047R                   |
| GRTAVGTTRIFRKRN | 48         | DIXDC1 | FS INDEL      | p.S60fs, p.P61fs, p.S271fs, p.P272fs |
| MGRTAVGTTRIFRKR | 48         | DIXDC1 | FS INDEL      | p.S60fs, p.P61fs, p.S271fs, p.P272fs |
| VTYALHGQY       | 48         | DIXDC1 | FS INDEL      | p.S60fs, p.P61fs, p.S271fs, p.P272fs |
| KQWFSPSNGRKRSYF | 47         | DIXDC1 | FS INDEL      | p.S60fs, p.P61fs, p.S271fs, p.P272fs |
| LSKQWFSPSNGRKRS | 47         | DIXDC1 | FS INDEL      | p.S60fs, p.P61fs, p.S271fs, p.P272fs |
| RTAVGTTRIFRKRNG | 47         | DIXDC1 | FS INDEL      | p.S60fs, p.P61fs, p.S271fs, p.P272fs |
| SKQWFSPSNGRKRSY | 47         | DIXDC1 | FS INDEL      | p.S60fs, p.P61fs, p.S271fs, p.P272fs |
| QWFSPSNGRKRSYFS | 46         | DIXDC1 | FS INDEL      | p.S60fs, p.P61fs, p.S271fs, p.P272fs |
| RIFRKRNGGSKENDI | 45         | DIXDC1 | FS INDEL      | p.S60fs, p.P61fs, p.S271fs, p.P272fs |
| TRIFRKRNGGSKEND | 45         | DIXDC1 | FS INDEL      | p.S60fs, p.P61fs, p.S271fs, p.P272fs |
| LMGRTAVGTTRIFRK | 44         | DIXDC1 | FS INDEL      | p.S60fs, p.P61fs, p.S271fs, p.P272fs |



# Mutation rates in different types of breast cancer







20-

# Mutation rates in different types of breast cancer





#### **Neoantigen-based trial**





#### **The Checkpoint Blockade Revolution**





#### **Immune checkpoint blockade for TNBC**





# Combination therapy results in complete regression and sustained progression free survival





## Combination therapy results higher infiltration of memory effector T cells



Karyampudi, et al. *Cancer Res.* 2014



## Goals

- To develop a vaccine that targets all three major subsets of breast cancer
- To develop a vaccine that reduces the incidence of breast cancer
- To develop a vaccine that prevents death from breast cancer
- To develop a safe and cost-effective vaccine





# The mammary gland has a mucosal immune system



H&E

CD8





#### • HER2/neu (185 kDa) (OC 30%)

- Cell surface growth factor receptor.
- Angiogenesis, proliferation, embryonic development.
- Expressed in majority of breast cancers and amplified in 20%.
- Associated with aggressive behavior.

#### • MAGE3 (34 kDa) (OC 100%)

- Limited to placental trophoblast cells and germ cells of the testes
- Function is not known.
- Expressed in ~50% of breast cancers.
- MUC1 (225-500 kDa) (OC 95%)
  - Large membrane glycosylated protein lubrication/hydration.
  - Overexpressed and aberrantly glycosylated in 90% of breast cancer.

#### • Survivin (16 kDa) (OC 85%)

- Anti-apoptosis protein.
- Extensive expression in fetal and embryonic development. Not expressed in normal differentiated cells.
- Expressed in more than 90% of breast cancer.

#### • Mammaglobin A (10 kDa) (OC ?)

- Secretory protein of unknown function.
- Very limited expression in normal healthy tissue and expressed 10 fold-higher in 40-80% of breast cancers.

#### • hTERT (126 kDa) (OC 100%)

- Main protein component of the telomerase enzyme, an enzyme that maintains the length of chromosomes.
- Not expressed in dividing cells but overexpressed in more than 90% of breast cancer.



- 1) To develop a vaccine that targets all three major subsets of breast cancer
- 2) To develop a vaccine that reduces the incidence of breast cancer
- 3) To develop a vaccine that prevents death from breast cancer
  - To develop a safe and cost-effective vaccine



| Product                                              | Indication                                           | Preclinical | Phase 1 | Phase 2 |
|------------------------------------------------------|------------------------------------------------------|-------------|---------|---------|
| FR with anti-PD-L1                                   | Ovarian Cancer                                       |             |         |         |
| FR DC Vaccine                                        | DC                                                   |             |         |         |
| FR                                                   | Triple-Negative<br>Breast Cancer                     |             |         |         |
| FR                                                   | Platinum-Sensitive<br>Ovarian Cancer<br>(Fast Track) |             |         |         |
| HER2/neu                                             | Surgically Resected<br>Breast Cancer                 |             |         |         |
| HER2/neu                                             | DCIS                                                 |             | •       |         |
| HER2/neu, MUC1,<br>hTERT, MammA,<br>Survivin, MAGEA3 | Prophylactic                                         |             |         |         |



## Conclusions



- More needs to be done in the disease free period to boost host immunity against cancers at high risk for relapse
- Vaccines can be developed that target aberrantly expressed proteins. Useful for preventing disease recurrence?
- Repolarizing immune response may improve outcomes.
- Checkpoint activity appears to be limited for TNBC but may be improved by inclusion of vaccines.



## Acknowledgements

#### Mayo

Cathy Andorfer, Ph.D. Michael Asiedu, Ph.D. Alvaro Moreno Aspitia, M.D. Karla Ballman, Ph.D. Marshall Behrens, B.Sc. Matt Block, M.D., Ph.D. Amy Degnim, M.D. Al Dietz, Ph.D. Haidong Dong, Ph.D. Courtney Erskine, B.Sc. Matthew Goetz, M.D. Karin Goodman, R.N. Lynn Hartmann, M.D. Karen Hedin, Ph.D. Timothy Hobday, M.D. Jim Ingle, Ph.D. Kimberly Kalli, Ph.D. Scott Kaufmann, M.D., Ph.D Judith Kaur, M.D.

Michael Kline, Ph.D. James Krempski, B.Sc. Yanyan Lou, M.D. Puru Lamichhane, Ph.D. Matt Maurer Toni Kay Mangskau Sharon Mercill, Ph.D. Manu Nair Aziza Nassar. M.D. **Douglas Padley** Edith Perez, M.D. Claudia Preston, M.D. Danell Puglisi-Knutson, B.A. **Barath Shreeder** Vera Suman, Ph.D. Jennifer Reiman, Ph.D. Katie Ruddy, MD Marta Santisteban, M.D., Ph.D. Mark Sherman, M.D. Jean Stahl, R.N. Winston Tan M.D.

Dan Visscher, M.D.

#### VGTI FL

Lavakumar Karyampudi, Ph.D. Patrick Yeramian, M.D. Ph.D. Richard Jove, Ph.D. Kathleen Kemp Shaun White, M.A.

#### NBCC

Frank Calzone, Ph.D. Sylvia Formenti, M.D. Alan Welm, Ph.D. Fran Visco, J.D.

#### Financial support

National Breast Cancer Coalition VGTI FL K01 100764 R01 113861 R01 152045 Mayo Ovarian Cancer SPORE Mayo Breast Cancer SPORE Mayo Comp Cancer Center Komen Foundation Mayo CTSA MOCA VaxOnco TapImmune Andersen Foundation Cancurables National Breast Cancer Coalition Department of Defense BCRP Department of Defense OCRP

#### Other

Raphael Clynes, M.D. Ph.D. Columbia University Martin Cannon, Ph.D. University of Arkansas Nora Disis, M.D. UW Mac Cheever, M.D. UW Doug McNeel, M.D. Ph.D. Uwisc Glynn Wilson, Ph.D. Tapimmune Eric von Hofe, Ph.D. Antigen Express

